Q. Let $a, b, c$ be real numbers, $a \neq 0$, if $\alpha$ is a root of $a^2 x^2+b x+c=0, \beta$ is a root of $a^2 x^2-b x-c=0$ and $0< \alpha< \beta$, then the equation $a^2 x^2+2 b x+2 c=0$ has a root $\gamma$ that always satisfies:
Complex Numbers and Quadratic Equations
Solution: