Q. Let $a, b, c$ be real number $\left(a \ne 0\right)$ If $\alpha$ is a root of $a^{2}x^{2}+bx+c=0$, $\beta$ is a root of $a^{2}x^{2}-bx-c=0$ and $0 <\,\alpha<\,\beta$, then the root of the equation (say $\gamma)$ $a^{2}\,x^{2}+2bx+2c=0$ always satisfies
Complex Numbers and Quadratic Equations
Solution: