Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A$ and $B$ be two non-singular skew symmetric matrices such that $A B=B A$, then $A^{2} B^{2}\left(A^{ T } B\right)^{-1}\left(A B^{-1}\right)^{ T }$ is equal to

WBJEEWBJEE 2021

Solution:

$A B=B A, A^{ T }=-A, B^{ T }=-B$
$\because$ matrices are non singular
$\therefore $ order is even
$A^{2} B^{2}\left(A^{ T } B\right)^{-1}\left(A B^{-1}\right)^{ T }$
$=A^{2} B^{2}(-A B)^{-1}\left(A B^{-1}\right)^{ T }$
$=-A^{2} B^{2} B^{-1} A^{-1}\left(B^{ T }\right)^{-1} A^{ T }$
$=-A^{2} B A^{-1} B^{-1} A$
$=-A^{2} B(B A)^{-1} A$
$=-A^{2} B(A B)^{-1} A$
$=-A^{2} B B^{-1} A^{-1} A=-A^{2}$