Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A$ and $B$ are two non-singular matrices such that $AB=BA^{2},B^{4}=I$ and $A^{k}=I,$ then $k$ can be equal to

NTA AbhyasNTA Abhyas 2020Matrices

Solution:

$AB^{4}=AB\left(\right.B\left.\right)\left(\right.B\left.\right)\left(\right.B\left.\right)$
$=BA^{2}\left(\right.B\left.\right)\left(\right.B\left.\right)\left(\right.B\left.\right)$
$=BA\left(\right.AB\left.\right)BB$
$=BA\left(\right.BA^{2}\left.\right)BB$
$=B\left(\right.AB\left.\right)\left(\right.A^{2}BB\left.\right)$
$=BBA^{4}BB$
$=B^{2}BA^{8}B=B^{4}A^{16}$
$\Rightarrow A=A^{16}\Rightarrow A^{15}=I$