Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A$ and $B$ are two non-singular matrices of order $3$ such that $A+B=2I$ and $A^{- 1}+B^{- 1}=3I$ , then $AB$ is equal to (where, $I$ is the identity matrix of order $3$ )

NTA AbhyasNTA Abhyas 2020Matrices

Solution:

Given $A+B=2I$ ... (i)
and $A^{- 1}+B^{- 1}=3I$ ...(ii)
Multiplying by matrix $A$ in eq. (ii), we get,
$AA^{- 1}+AB^{- 1}=3AI$
$I+AB^{- 1}=3A$
Now, multiplying by matrix $B$ , we get,
$IB+AB^{- 1}B=3AB$
$\Rightarrow B+A=3AB$
$\Rightarrow 3AB=2I$ (from (i))
$\Rightarrow AB=\frac{2 I}{3}$