Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A$ and $B$ are square matrices of order $3$ such that $AB^{2}=BA$ and $BA^{2}=AB.$ If $\left(A B\right)^{3}=A^{3}B^{m}$ , then $m$ is equal to

NTA AbhyasNTA Abhyas 2020Matrices

Solution:

$\left(A B\right)^{3}=\left(A B\right)\left(A B\right)\left(A B\right)$
$=A\left(B A\right)\left(B A\right)B$
$=A\left(A B^{2}\right)\left(A B^{2}\right)B=A^{2}B\left(B A\right)B^{3}$
$=A^{2}B\left(A B^{2}\right)B^{3}$
$=A^{2}\left(B A\right)B^{5}=A^{2}\left(A B^{2}\right)B^{5}$
$=A^{3}B^{7}$