Q. Let $A$ and $B$ are $3\times 3$ matrices with real number entries, where $A$ is symmetric, $B$ is skew-symmetric and $\left(A + B\right)\left(A - B\right)=\left(A - B\right)\left(A + B\right)$ . If $\left(A B\right)^{T}=\left(- 1\right)^{k}AB$ , then the sum of all possible integral value of $k$ in $\left[2 , 10\right]$ is equal to (where $A^{T}$ represent transpose of matrix $A$ )
NTA AbhyasNTA Abhyas 2020Matrices
Solution: