Q. Let $\overrightarrow{ a }=a_{1} \hat{ i }+a_{2} \hat{ j }+a_{3} \hat{ k }, \overrightarrow{ a }=b_{1} \hat{ i }+b_{2} \hat{ j }+b_{3} \hat{ k }$ and $\overrightarrow{ a }=c_{1} \hat{ i }+c_{2} \hat{ j }+c_{3} \hat{ k }$ be three non-zero vectors such that $\overrightarrow{ c }$ is a unit vector perpendicular to both the vectors $\overrightarrow{ c }$ and $\overrightarrow{ b }$. If the angle between $\overrightarrow{ a }$ and $\overrightarrow{ b }$ is $\frac{\pi}{6}$, then $\begin{vmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{vmatrix}^2$ is equal to
IIT JEEIIT JEE 1983Vector Algebra
Solution: