Q.
Let $A=\begin{bmatrix}a_{1} \\ a_{2}\end{bmatrix}]$ and $B=\begin{bmatrix}b_{1} \\ b_{2}\end{bmatrix}]$ be two $2 \times 1$
matrices with real entries such that $A = XB$,
where $X=\frac{1}{\sqrt{3}}\begin{bmatrix}1 & -1 \\ 1 & k\end{bmatrix}]$, and $k \in R .$If $a _{1}^{2}+ a _{2}^{2}=\frac{2}{3}\left( b _{1}^{2}+ b _{2}^{2}\right)$ and $\left( k ^{2}+1\right) b _{2}^{2} \neq-2 b _{1} b _{2}$,then the value of $k$ is_______.
Solution: