Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A=\begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix}$, then $A ^{ n }$ is equal to

Matrices

Solution:

$A^2=\begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix} \begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix}=\begin{bmatrix}a^2&0&0\\ 0&a^2&0\\ 0&0&a^2\end{bmatrix}$
$A^3=\begin{bmatrix}a^2&0&0\\ 0&a^2&0\\ 0&0&a^2\end{bmatrix}\begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix}=\begin{bmatrix}a^3&0&0\\ 0&a^3&0\\ 0&0&a^3\end{bmatrix}$