Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A=\begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix}, $ then $A^n$ is equal to

Matrices

Solution:

$A^{2}=\begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix}\begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix}=\begin{bmatrix}a^{2}&0&0\\ 0&a^{2}&0\\ 0&0&a^{2}\end{bmatrix}$
$A^{3}=\begin{bmatrix}a^{2}&0&0\\ 0&a^{2}&0\\ 0&0&a^{2}\end{bmatrix}\begin{bmatrix}a&0&0\\ 0&a&0\\ 0&0&a\end{bmatrix}=\begin{bmatrix}a^{3}&0&0\\ 0&a^{3}&0\\ 0&0&a^{3}\end{bmatrix}$