Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A \equiv(-3,0)$ and $B \equiv(3,0)$ be two fixed points and $P$ moves on a plane such that $PA = nPB ( n >0)$.
If $0< n< 1$, then -

Conic Sections

Solution:

For $0< n< 1 $
locus is $\left(1-n^2\right)\left(x^2+y^2\right)+6 x\left(1+n^2\right)+9\left(1-n^2\right)=0$
putting $A(-3,0)$ in the above equation $9\left(1-n^2\right)-18\left(1+n^2\right)+9\left(1-n^2\right)=-36 n^2< 0$
$\therefore$ A lies inside the circle.
Similarly for B $(3,0)$
$9\left(1-n^2\right)+18\left(1+n^2\right)+9\left(1-n^2\right) $
$ =36 >0$
$\therefore$ B lies outside the circle.