Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $a_{1}, a_{2} \ldots, a_{n}$ be a given $A.P$. whose common difference is an integer and $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ If $a_{1}=1, a_{n}=300$ and $15 \leq n \leq 50,$ then the ordered pair $\left( S _{ n -4}, a _{ n -4}\right)$ is equal to

JEE MainJEE Main 2020Sequences and Series

Solution:

$ a_{n} =a_{1}+(n-1) d$
$ \Rightarrow 300=1+(n-1) d $
$ \Rightarrow (n-1) d=299=13 \times 23$
$ \text { since, } n \in[15,50] $
$\therefore n =24 \text { and } d=13 $
$a_{n-4}=a_{20}=1+19 \times 13=248 $
$\Rightarrow a_{n-4}=248$
$S _{n-4}=\frac{20}{2}\{1+248\}=2490 $