Q.
Let $a_1, a_2, a_3 \ldots \ldots \ldots . .$. be an arithmetic progression and $b_1, b_2, b_3, \ldots \ldots$ be a geometric progression. The sequence $c _1, c _2, c _3, \ldots \ldots \ldots .$. is such that $c _{ n }= a _{ n }+ b _{ n } \forall n \in N$. Suppose $c _1=1, c _2=4$, $c_3=15$ and $c_4=2$.
The common ratio of geometric progression is equal to
Sequences and Series
Solution: