Q.
Let $A=\{1,2,3, \ldots, 10\}$ and $f: A \rightarrow A$ be
defined as $f(K)=
\begin{cases}
K +1 & \text{if $ K $is odd} \\[2ex]
K & \text{if $ K $ is odd}
\end{cases}$
Then the number of possible functions $g: A \rightarrow A$ such that go $f=f$ is
Solution: