Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[1 2 3 4] and B=[a 0 0 b] a, b ∈ N. Then,
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $A=\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$ and $B=\begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix} a, b \in N$. Then,
Matrices
A
there exists more than one but finite number of $B^{\prime}$ s such that $A B=B A$
B
there exists exactly one $B$ such that $A B=B A$
C
there exists infinitely many $B^{\prime}$ s such that $A B=B A$
D
there cannot exist any $B$ such that $A B=B A$
Solution:
Given that,
$A =\begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}$
and $B B=\begin{bmatrix}a & 0 \\0 & b\end{bmatrix}$
Now, $ A B=\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}=\begin{bmatrix}a & 2 b \\ 3 a & 4 b\end{bmatrix}$
and $ B A=\begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}=\begin{bmatrix}a & 2 a \\ 3 b & 4 b\end{bmatrix}$
If $A B=B A$, then $a=b$
Hence, $A B=B A$ is possible for infinitely many values of $B$.