Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A=\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$ and $B=\begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix} a, b \in N$. Then,

Matrices

Solution:

Given that,
$A =\begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}$
and $B B=\begin{bmatrix}a & 0 \\0 & b\end{bmatrix}$
Now, $ A B=\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}=\begin{bmatrix}a & 2 b \\ 3 a & 4 b\end{bmatrix}$
and $ B A=\begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}=\begin{bmatrix}a & 2 a \\ 3 b & 4 b\end{bmatrix}$
If $A B=B A$, then $a=b$
Hence, $A B=B A$ is possible for infinitely many values of $B$.