Q. Let $a_1=1, a_2, a_3, a_4, \ldots .$. be consecutive natural numbers. Then $\tan ^{-1}\left(\frac{1}{1+a_1 a_2}\right)+\tan ^{-1}\left(\frac{1}{1+a_2 a_3}\right)+\ldots .+\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right)$ is equal to
Solution: