Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A=\begin{bmatrix}1 & 0 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 2\end{bmatrix}$, then ${det}\left((A-I)^{3}-4 A\right)$ is

Matrices

Solution:

Characteristic equation of $A$ is $|A-x I|=0$
$\Rightarrow x^{3}-3 x^{2}-x-3=0$
or $A^{3}-3 A^{2}-A-3 I=0$
$(A-I)^{3}=4 A+2 I$
$\left((A-I)^{3}-4 A\right)=2 I$