Q.
Let $A=\begin{pmatrix}1 & 0 & 0 \\ 0 & \cos t & \sin t \\ 0 & -\sin t & \cos t\end{pmatrix}$
Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the roots of $\text{det}\left(A-\lambda I_{3}\right)=0$, where $I_{3}$ denotes the identity matrix. If $\lambda_{1}+\lambda_{2}+\lambda_{3}=\sqrt{2}+1$, then the set of possible values of $t,-\pi \leq t<\pi$ is
WBJEEWBJEE 2021
Solution: