Thank you for reporting, we will resolve it shortly
Q.
Let $A=\begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{bmatrix}$. Then the number of $3 \times 3$ matrices
$B$ with entries from the set $\{1,2,3,4,5\}$ and satisfying $A B=B A$ is_______.
Let matrix $B=\begin{bmatrix}a & b & c \\ d & e & f \\ g & h & i\end{bmatrix}$
$\because A B=B A$
$\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}=\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} $
$\begin{bmatrix}
d & e & f \\
a & b & c \\
g & h & i
\end{bmatrix}=\begin{bmatrix}
b & a & c \\
e & d & f \\
h & g & i
\end{bmatrix}$
$\Rightarrow d=b, e=a, f=c, g=h$
$\therefore $ Matrix $B=\begin{bmatrix}a & b & c \\ b & a & c \\ g & g & i\end{bmatrix}$
No. of ways of selecting $a, b, c, g, i$
$=5 \times 5 \times 5 \times 5 \times 5$
$=5^{5}=3125$
$\therefore $ No. of Matrices $B=3125$