Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let 9=x1< x2< ldots< x7 be in an A.P. with common difference d. If the standard deviation of x1, x2 ldots, x7 is 4 and the mean is barx, then barx+x6 is equal to :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $9=x_1< x_2< \ldots< x_7$ be in an A.P. with common difference $d$. If the standard deviation of $x_1, x_2$ $\ldots, x_7$ is 4 and the mean is $\bar{x}$, then $\bar{x}+x_6$ is equal to :
JEE Main
JEE Main 2023
Statistics
A
$18\left(1+\frac{1}{\sqrt{3}}\right)$
B
$2\left(9+\frac{8}{\sqrt{7}}\right)$
C
34
D
25
Solution:
$ 9=x_1< x_2< \ldots \ldots< x_7 $
$ 9,9+d, 9+2 d, \ldots \ldots .9+6 d $
$ 0, d, 2 d, \ldots \ldots .6 d$
$ \overline{ x }_{\text {new }}=\frac{21 d }{7}=3 d $
$ 16=\frac{1}{7}\left(0^2+1^2+\ldots \ldots .+6^2\right) d ^2-9 d ^2$
$=\frac{1}{\not 7}\left(\frac{6 \times \not 7 \times 13}{\not 6}\right) d ^2-9 d ^2$
$ 16=4 d^2 $
$ d^2=4$
$ d=2$
$\bar{x}+x_6=6+9+10+9$