Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $Ι_{1}=\displaystyle \int _{0}^{1} e^{x^{2}} d x$ and $Ι_{2}=\displaystyle \int _{0}^{1} 2 x^{2} e^{x^{2}} d x$ , then the value of $Ι_{1}+Ι_{2}$ is equal to

NTA AbhyasNTA Abhyas 2020Integrals

Solution:

$Ι_{2}=\displaystyle \int _{0}^{1} 2 x^{2} e^{x^{2}} d x$
$=\displaystyle \int _{0}^{1}\left(2 x e^{x^{2}}\right)xdx$
Using integration by parts,
$Ι_{2}=\left[x e^{x^{2}}\right]_{0}^{1}-\displaystyle \int _{0}^{1} e^{x^{2}} d x$
$Ι_{2}+Ι_{1}=e$