Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $0 < \theta < \frac{\pi}{2}$ . If the eccentricity of the hyperbola $\frac{x^{2}}{\cos^{2} \theta} - \frac{y^{2}}{\sin^{2} \theta } = 1 $ is greater than $2$, then the length of its latus rectum lies in the interval :

JEE MainJEE Main 2019Conic Sections

Solution:

$e = \sqrt{1+\tan^{2} \theta} = \sec\theta $
As, $ \sec\theta>2 \Rightarrow \cos\theta < \frac{1}{2}$
$ \Rightarrow \theta \in\left(60^{\circ}, 90^{\circ}\right) $
Now, $ \ell\left(L.R\right) = \frac{2b^{2}}{a} = 2 \frac{\left(1-\cos^{2}\theta\right)}{\cos\theta} $
$= 2\left(\sec\theta -\cos\theta\right)$
Which is strictly increasing, so
$\ell (L.R) \in (3 , \infty)$.