Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Length of the subtangent at (x1, y1) on xn ym = am+n, m, n > 0, is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Length of the subtangent at $ (x_1, y_1)$ on $x^n y^m = a^{m+n}, m, n > 0,$ is
KCET
KCET 2012
Application of Derivatives
A
$\frac {n}{m}|x_1|$
9%
B
$\frac {m}{n}|x_1|$
43%
C
$\frac {n}{m}|y_1|$
24%
D
$\frac {m}{n}|y_1|$
24%
Solution:
Given, $x^{n}y^{m} = a^{m + n}, m, n >\, 0$
Taking logarithm on both sides, we get
log $\left(x^{n}y^{m}\right) = log \,a^{m + n}$
$\Rightarrow log x^{n} + log\, y^{m} = \left(m + n\right)$ log a
$\Rightarrow n log x + m log y = \left(m + n\right) log a\quad ... \left(i\right)$
On differentiating Eq. (i) w.r.t. 'x', we get
$\frac{n}{x}+\frac{m}{y} = 0$
$\Rightarrow \frac{m}{y} \frac{dy}{dx} = -\frac{n}{x}$
$\Rightarrow \frac{dy}{dx} = -\left(\frac{n}{m}\right)\left(\frac{y}{x}\right)$
$\therefore $ Length of subtangent
$= \frac{y}{dy / dx}$
$= \frac{y}{-\left(\frac{n}{m}\right)\left(\frac{y}{x}\right)}$
$= \frac{-mx}{n}$
$\therefore $ Length of sub tangent at $\left(x_{1}, y_{1}\right) = \frac{m}{n}\left|x_{1}\right|$