Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. LCR circuit, the resonance frequency of circuit increases two times of the initial circuit by changing $C$ and $C^{\prime}$ and $R$ from $100\, \Omega$ to $400\, \Omega$, while the inductance was kept the same. The ratio $C / C^{\prime}$, is

TS EAMCET 2019

Solution:

Given,
in series $L C R$ circuit,
initial capacitance, $C_{1}=C$
final value of capacitance, $C_{2}=C^{\prime}$
inductance, $L_{1}=L_{2}=L$
and resistance, $R_{1}=100 \,\Omega$
$R_{2}=400 \,\Omega$
$\therefore $ Resonance frequency,
$f_{1}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}} \Rightarrow f_{1}=\frac{1}{2 \pi \sqrt{L C}}$
and $f_{2}=\frac{1}{2 \pi \sqrt{L_{2} C_{2}}} \Rightarrow f_{2}=\frac{1}{2 \pi \sqrt{L \cdot C^{\prime}}}$
Given,$f_{2}=2 f_{1} \Rightarrow \frac{1}{2 \pi \sqrt{L C^{\prime}}}=\frac{2}{2 \pi \sqrt{L C}} $
$\frac{1}{\sqrt{C^{\prime}}}=\frac{2}{\sqrt{C}} \Rightarrow \frac{1}{C^{\prime}}=\frac{4}{C} \Rightarrow \frac{C}{C^{\prime}}=4$