Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Larger of 9950+10050 and 10150 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Larger of $99^{50}+100^{50}$ and $101^{50}$ is
Binomial Theorem
A
$101^{50}$
B
$99^{50}+100^{50}$
C
both are equal
D
none of these
Solution:
We have,
$101^{50}=(100+1)^{50} $
$=100^{50}+50 \cdot 100^{49}+\frac{50 \cdot 49}{1 \cdot 2} \cdot 100^{48}+\ldots$
and $99^{50}=(100-1)^{50}$
$=100^{50}-50 \cdot 100^{49}+\frac{50 \cdot 49}{1 \cdot 2} \cdot 100^{48}-\ldots$
Subtracting, we get
$101^{50}-99^{50}=2\left(50 \cdot 100^{49}+\frac{50 \cdot 49 \cdot 48}{1 \cdot 2 \cdot 3} \times 100^{47}+\ldots\right)$
$=100^{50}+2 \cdot \frac{50 \cdot 49 \cdot 48}{1 \cdot 2 \cdot 3} \cdot 100^{47}+\ldots>100^{50}$
Hence, $101^{50}>99^{50}+100^{50}$.