Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. It is given that $f'(a)$ exists, then $\displaystyle \lim_{x \to a} $ $\frac{xf \left(a\right)-af \left(x\right)}{(x-a)}$ is equal to

Continuity and Differentiability

Solution:

$\displaystyle \lim_{x \to a} $ $\frac{xf \left(a\right)-af \left(x\right)}{x-a}$
$=\displaystyle \lim_{x \to a} $ $\frac{xf \left(a\right)-xf \left(x\right)+xf \left(x\right)-af \left(x\right)}{\left(x-a\right)}$
$=\displaystyle \lim_{x \to a} $ $\left[\frac{x\left[f \left(a\right)-f \left(x\right)\right]}{\left(x-a\right)}+\frac{f \left(x\right)\left(x-a\right)}{\left(x-a\right)}\right]$
$=\displaystyle \lim_{x \to a} $ $-\frac{x\left[f \left(x\right)-f \left(a\right)\right]}{x-a}+$$\displaystyle \lim_{x \to a} f (x)$
$= -a f'(a)+ f(a) $
$= f(a)-af'(a)$