Thank you for reporting, we will resolve it shortly
Q.
$\int \frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4} d x$ is equal to
Integrals
Solution:
$\int \frac{\left(\frac{1}{x^2}-1\right)^{\frac{1}{3}}}{x^3} d x$
Put $\frac{1}{x^2}-1=t$
$\Rightarrow \int \frac{- t ^{\frac{1}{3}}}{2} dt =\frac{-3 t ^{\frac{4}{3}}}{8}+ C $
$\Rightarrow \frac{-3}{8}\left(\frac{1}{ x ^2}-1\right)^{\frac{4}{3}}+ C$