Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{x^{8}-9 x^{2}+18}{x^{4}-3 x^{2}+3} d x=$

TS EAMCET 2018

Solution:

$\int \frac{x^{8}-9 x^{2}+18}{x^{4}-3 x^{2}+3} d x$
$\because\, \frac{x^{8}-9 x^{2}+18}{x^{4}-3 x^{2}+3}-x^{4}+3 x^{2}+\frac{6 x^{4}-18 x^{2}+18}{x^{4}-3 x^{2}+3}$
$\Rightarrow \, x^{4}+3 x^{2}+6$
Now, $\int x^{4}+3 x^{2}+6 d x$
$ \Rightarrow \, \frac{x^{5}}{5}+\frac{3 x^{3}}{3}+6 x+c$
$\Rightarrow \, \frac{x^{5}}{5}+x^{3}+6 x+c$