Thank you for reporting, we will resolve it shortly
Q.
$\int x ^{51}\left(\tan ^{-1} x +\cot ^{-1} x \right) d x$
Integrals
Solution:
$\int x^{51}\left(\tan ^{-1} x+\cot ^{-1} x\right) d x$
$=\int x ^{51} \cdot \frac{\pi}{2} dx\,\, \left\{\because \tan ^{-1} x +\cot ^{-1} x =\frac{\pi}{2}\right\}$
$=\frac{\pi x ^{52}}{104}+ c =\frac{ x ^{52}}{52}\left(\tan ^{-1} x +\cot ^{-1} x \right)+ c .$