Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int\frac{x^{3}dx}{1+x^{8}} = $

WBJEEWBJEE 2011Integrals

Solution:

Let $I =\int \frac{x^{3}}{1+x^{8}} d x $
Put $ x^{4} = t \Rightarrow 4 x^{3} d x=d t$
$ \therefore I =\int \frac{d t}{4\left(1+t^{2}\right)} $
$=\frac{1}{4} \tan ^{-1} t+C$
$=\frac{1}{4} \tan ^{-1} x^{4}+C $