Thank you for reporting, we will resolve it shortly
Q.
$\int \frac{\left(x^{3}-1\right)}{\left(x^{4}+1\right)(x+1)} d x=$
Integrals
Solution:
$\int \frac{x^{3}-1}{\left(x^{4}+1\right)(x+1)} d x =\int \frac{\left(x^{4}+x^{3}\right)-\left(x^{4}+1\right)}{\left(x^{4}+1\right)(x+1)} d x$
$=\int \frac{x^{3}}{x^{4}+1} d x-\int \frac{1}{x+1} d x$
$=\frac{1}{4} \ln \left(x^{4}+1\right)-\ln (x+1)+c$