Thank you for reporting, we will resolve it shortly
Q.
$\int x^2 e^{x^3} d x$ is equal to
Integrals
Solution:
Let $I=\int x^2 e^{x^3} d x$
Put $x^3=t \Rightarrow 3 x^2=\frac{d t}{d x} \Rightarrow d x=\frac{d t}{3 x^2}$
$\therefore I=\frac{1}{3} \int e^t d t $
$\Rightarrow I=\frac{1}{3} e^t+C=\frac{1}{3} e^{x^3}+C$
Hence, correct option is (a).