Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \left(\frac{\left(x^{2}+2\right)a^{\left(x +tan^{-1}x\right)}}{x^{2}+1}\right)dx = $

MHT CETMHT CET 2016Integrals

Solution:

Let $I=\int \frac{\left(x^{2}+2\right) a^{\left(x+\tan ^{-1} x\right)}}{x^{2}+1} dx$
Put $ x+\tan ^{-1} x=t$
$\Rightarrow \left(1+\frac{1}{1+x^{2}}\right) dx=dt$
$\Rightarrow \frac{2+x^{2}}{1+x^{2}} dx=dt$
$ \therefore I =\int a^{t} dt=\frac{a^{t}}{\log a}+c$
$=\frac{a^{x+\tan ^{-1} x}}{\log a}+c $