Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{x^{2}}{1+\left(x^{3}\right)^{2}}dx $ is equal to

KEAMKEAM 2017Integrals

Solution:

Let $I=\int \frac{x^{2}}{1+\left(x^{3}\right)^{2}} d x$
Put $x^{3}=t$
$\therefore 3 x^{2} d x=d t$
$\therefore I=\frac{1}{3} \int \frac{d t}{1+t^{2}}=\frac{1}{3} \tan ^{-1} t+C$
$=\frac{1}{3} \tan ^{-1}\left(x^{3}\right)+C$