Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\tan ({{\sin }^{-1}}x)}dx $ is equal to

KEAMKEAM 2008Integrals

Solution:

Let $ I=\int{\tan ({{\sin }^{-1}}x)}dx $
$=\int{\tan \left( {{\tan }^{-1}}\frac{x}{\sqrt{1-{{x}^{2}}}} \right)}dx $
$=\int{\frac{x}{\sqrt{1-{{x}^{2}}}}}dx $ Put $ 1-{{x}^{2}}={{t}^{2}}\Rightarrow -2xdx=2t\,dt $
$ \therefore $ $ I=-\int{\frac{t\,dt}{t}}=-t+c $
$ \Rightarrow $ $ I=-\sqrt{1-{{x}^{2}}}+c $