Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \tan ^3 2 x \sec 2 x d x$ is equal to :

Integrals

Solution:

$\int \tan ^3 2 x \cdot \sec 2 x d x$
$I=\int\left(\sec ^2 2 x-1\right) \sec 2 x \cdot \tan 2 x d x $
Put $\sec 2 x=t \Rightarrow 2 \sec 2 x \tan 2 x d x=d t$
$\Rightarrow I=\frac{1}{2} \int\left(t^2-1\right) d t$
$=\frac{t^3}{6}-\frac{t}{2}+C=\frac{1}{6} \sec ^3 2 x-\frac{1}{2} \sec 2 x+C$