Thank you for reporting, we will resolve it shortly
Q.
$\int \sin x \cdot \cos x \cdot \cos 2 x \cdot \cos 4 x \cdot \cos 8 x d x$ is equal to
Integrals
Solution:
$I=\int \sin x \cdot \cos x \cdot \cos 2 x \cdot \cos 4 x \cdot \cos 8 x d x$
$=\frac{1}{2} \int \sin 2 x \cdot \cos 2 x \cdot \cos 4 x \cdot \cos 8 x d x$
$=\frac{1}{4} \int \sin 4 x \cdot \cos 4 x \cdot \cos 8 x d x$
$=\frac{1}{8} \int \sin 8 x \cdot \cos 8 x d x$
$=\frac{1}{16} \int \sin 16 x d x=\frac{-1}{256} \cos 16 x+C$