Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫( ( sin 2x/ sin 3x sin 5x) )dx is equal to:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $ \int{\left( \frac{\sin 2x}{\sin 3x\sin 5x} \right)}dx $ is equal to:
KEAM
KEAM 2006
A
$ \frac{1}{5}{{\log }_{e}}|\sin 5x|-\frac{1}{3}{{\log }_{e}}|\sin 3x|+c $
B
$ \frac{1}{3}{{\log }_{e}}|\sin 3x|-\frac{1}{5}{{\log }_{e}}|\sin 5x|+c $
C
$ \frac{1}{3}{{\log }_{e}}|\sin 3x|+\frac{1}{5}{{\log }_{e}}|\sin 5x|+c $
D
$ -\frac{1}{2}\cos 2x+\frac{1}{3}{{\log }_{e}}|\sin 3x| $ $ +\frac{1}{5}{{\log }_{e}}|sin5x|+c $
E
$ -\frac{1}{2}\cos 2x-\frac{1}{3}{{\log }_{e}}|\sin 3x| $ $ -\frac{1}{5}{{\log }_{e}}|\sin 5x|+c $
Solution:
$ \int{\frac{\sin 2x}{\sin 3x\sin 5x}}dx=\int{\frac{\sin (5x-3x)}{\sin 3x\sin 5x}}dx $ $ =\int{\frac{\sin 5x\cos 3x-\cos 5x\sin 3x}{\sin 3x\sin 5x}}dx $ $ =\int{(\cot 3x-\cot 5x)}dx $ $ =\frac{1}{3}\log |\sin 3x|-\frac{1}{5}\log |\sin 5x|+c $