Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\left( \frac{\sin 2x}{\sin 3x\sin 5x} \right)}dx $ is equal to:

KEAMKEAM 2006

Solution:

$ \int{\frac{\sin 2x}{\sin 3x\sin 5x}}dx=\int{\frac{\sin (5x-3x)}{\sin 3x\sin 5x}}dx $ $ =\int{\frac{\sin 5x\cos 3x-\cos 5x\sin 3x}{\sin 3x\sin 5x}}dx $ $ =\int{(\cot 3x-\cot 5x)}dx $ $ =\frac{1}{3}\log |\sin 3x|-\frac{1}{5}\log |\sin 5x|+c $