Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫( sec x cosec x/2 cot x- sec x cos ecx)dx is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $ \int{\frac{\sec x cosec x}{2\cot x-\sec x\cos ecx}}dx $ is equal to
KEAM
KEAM 2008
Integrals
A
$ \log |\sec x+\tan x|+c $
4%
B
$ \log |\sec x+\cos ecx|+c $
14%
C
$ \frac{1}{2}\log |\sec 2x+\tan 2x|+c $
66%
D
$ \log |\sec 2x+\cos ec2x|+c $
10%
E
$ \log |\sec 2x\,\cos ec2x|+c $
10%
Solution:
$ \int{\frac{\sec x\cos ecx}{2\cot x-\sec x\cos ecx}}dx $
$=\int{\frac{\frac{1}{\cos x\sin x}}{\frac{2\cos x}{\sin x}-\frac{1}{\sin x\cos x}}}dx $
$=\int{\frac{dx}{2{{\cos }^{2}}x-1}} $
$=\int{\frac{dx}{{{\cos }^{2}}x-{{\sin }^{2}}x}=\int{\sec 2x\,dx}} $
$=\frac{1}{2}\log |\sec 2x+\tan 2x|+c $