Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int\left(\sec ^{4} x+\tan ^{4} x\right) d x=$

AP EAMCETAP EAMCET 2018

Solution:

$I=\int\left(\sec ^{4} x+\tan ^{4} x\right) d x$
$=\int\left[\sec ^{4} x+\left(\sec ^{2} x-1\right)^{2}\right] d x$
$=\int\left(2 \sec ^{4} x-2 \sec ^{2} x+1\right) d x$
$=\int\left[2\left(1+\tan ^{2} x\right) \sec ^{2} x-2 \sec ^{2} x+1\right] d x$
$=\int\left(2 \tan ^{2} x \sec ^{2} x+1\right) d x=\frac{2}{3} \tan ^{3} x +x +c$