Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\log 2x\,\,dx} $ is equal to

Jharkhand CECEJharkhand CECE 2007

Solution:

Let $I=\int \log 2 x d x$ or $I=\int 1 \cdot \log 2 x d x \Rightarrow $ $$ \begin{array}{l} I=\log 2 x \int 1 \cdot d x-\int\left\{\left(\frac{d}{d x} \log 2 x\right) \int 1 d x\right) d x \Rightarrow \\ I=x \log 2 x-\int \frac{1}{2 x} \cdot 2 \cdot x \quad d x \Rightarrow I=x \log 2 x-x+c \end{array} $$