Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int\limits_1^e \log \, x \, dx = $

COMEDKCOMEDK 2015Integrals

Solution:

We have, $ \int\limits_1^e \log \, x \, dx = $
$=\left[\log x \int\limits 1 dx \right]^{e}_{1} - \int\limits_1^e \left( \frac{d}{dx} \log \, x \, \int\limits 1 \, dx \right) dx $
$=\left[\log\, x . x \right]^{e}_{1} - \int\limits_1^e \frac{1}{x} x \, dx $
$ = [e \, \log \, e - 1 \, \log (1) ] - \int\limits_1^e 1 \, dx$
$ = e - [x]^e_1 =e - [e - 1] = 1$