Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int\limits_{-1}^1 (x^{27} \, \cos \, x + e^x) dx = $

COMEDKCOMEDK 2015Integrals

Solution:

Let $ I = \int\limits_{-1}^1 (x^{27} \, \cos \, x + e^x) dx $
$\Rightarrow \:\:\: I = \int\limits_{-1}^1 x^{27} \, \cos \, x\, dx + \int\limits_{-1}^1 e^x \, dx $
Since $f(x) = x^{27} \, \cos \, x$ is an odd function.
$\therefore \:\:\: \int\limits_{-a}^a f(x) dx = 0$
So, $I = 0 + |e^x |_{-1}^{1} = e - \frac{1}{e} $