Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int\limits_{-1}^{1 / 2} \frac{e^{x}\left(2-x^{2}\right) d x}{(1-x) \sqrt{1-x^{2}}}$ is equal to

Integrals

Solution:

$\int\limits_{-1}^{1 / 2} \frac{e^{x}\left(2-x^{2}\right) d x}{(1-x) \sqrt{1-x^{2}}}$
$=\int\limits_{-1}^{1 / 2} \frac{e^{x}\left(1-x^{2}+1\right)}{(1-x) \sqrt{1-x^{2}}}$
$=\int\limits_{-1}^{1 / 2} e^{x}\left[\sqrt{\frac{1+x}{1-x}}+\frac{1}{(1-x) \sqrt{1-x^{2}}}\right] d x$
$=\left.e^{x} \sqrt{\frac{1+x}{1-x}}\right|_{-1} ^{1 / 2}$
$=\sqrt{3 e}$