Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int\limits_0^{\pi /8} \tan^2 (2x) dx = $

COMEDKCOMEDK 2011Integrals

Solution:

Let $I = \int_{0}^{\frac{\pi}{8}}\tan^{2} \left(2x\right)dx $
$I = \int_{0}^{\frac{\pi }{8}}\left[\sec^{2} \left(2x\right) -1 \right]dx =\left[\frac{\tan2x}{2} -x\right]^{\frac{\pi}{8}}_{0}$
$ = \left[ \frac{\tan \frac{\pi}{4}}{2} - \frac{\pi}{8} - \frac{\tan 0}{2} +0\right]= \frac{1}{2}-\frac{\pi}{8}= \frac{4-\pi}{8} $