Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int e^{\tan{-1}x} (1 +\frac {x}{1+x^2})dx $ is equal to

KCETKCET 2009Integrals

Solution:

Let $I=\int e^{\tan ^{-1} x}\left(1+\frac{x}{1+x^{2}}\right) d x$
$=\int e^{\tan ^{-1} x} d x+\int \frac{x e^{\tan ^{-1} x}}{1+x^{2}} d x$
$=x e^{\tan ^{-1} x}-\int \frac{x e^{\tan ^{-1} x}}{1+x^{2}} d x+\int \frac{x e^{\tan ^{-1} x}}{1+x^{2}} d x+c$
$=x e^{\tan ^{-1} x}+c$