Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{e^{\cot ^{-1} x}}{1+x^{2}}\left(x^{2}-x+1\right) d x=\ldots \ldots \ldots \ldots+c$

Gujarat CETGujarat CET 2018

Solution:

$\int \frac{e^{\cot ^{-1} x}}{1+x^{2}}\left(x^{2}-x+1\right) d x$
Let $\cot ^{-1} x=t$
$\Rightarrow -\frac{1}{1+x^{2}} d x=d t$
$\int e^{t}\left(\cot t-\text{cosec}^{2} t\right) d t$
$e^{t} \cot t+c$
$x e^{\cot ^{-1} x}+c$