Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{dx}{e^{x} + e^{-x} + 2 }$ is equal to

KEAMKEAM 2017Integrals

Solution:

Let $I =\int \frac{d x}{e^{x}+e^{-x}+2} $
$=\int \frac{e^{x}}{e^{2 x}+2 e^{x}+1} d x$
Put $e^{x}=t$
$\Rightarrow e^{x} d x=d t$
$\therefore I=\int \frac{d t}{t^{2}+2 t+1}$
$=\int \frac{d t}{(t+1)^{2}}$
$=\frac{-1}{t+1}+C$
$=\frac{-1}{e^{x}+1}+C$