Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\frac{dx}{\sqrt{1-{{e}^{2x}}}}} $ is equal to

KEAMKEAM 2010Integrals

Solution:

Let $ I=\int{\frac{dx}{\sqrt{1-{{e}^{2x}}}}}=\int{\frac{{{e}^{-x}}}{\sqrt{{{e}^{-2x}}-1}}}dx $ Put $ t={{e}^{-x}} $
$ \Rightarrow $ $ dt=-{{e}^{-x}}dx $
$ \therefore $ $ I=\int{-\frac{dt}{\sqrt{{{t}^{2}}-1}}}=-\log |t+\sqrt{{{t}^{2}}-1}|+c $
$=-\log |{{e}^{-x}}+\sqrt{{{e}^{-2x}}-1}+c $